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calculating thermal
stre*ws in irregu.furcylinders codd bj one or mor; internal
jyw<age8. The we oj relaxation methodsand elementary meth-
mi.sqf finite di$erence~UYMfound to ~“re approximations to the
correct ra[ue~ when compared with pren”ously known solutions
for concentric circular cylinders pow-sting symmetrical and
asymmetn”caltempemture distribution.

INTRODUCTION

USEOl?COOLEOIRREGCZARCYLEXDEM

The evolution of aircraft propulsion systems h~s Ied to the
frequent employment of cooled structures. The concentric
hollow cylinder is a familiar example, although in some cases
irre~dm cyhnders such as cooled turbine Madea with severtd
int ernaI passages (reference 1) are under consideration. A
met hod of calculating stresses in thin-walled turbine bkdes
of the air-cooled t-ype is presented in reference 2, but the
general problem of ca~culating thermal strwes in long,
hollow, thick-walled irregular cylinders has Dot been solved.

PREHOCSWOFK OX THERMALSTRESSESIX HOLLOWCYLIN~E’RS

Se WA met hods of calctdating thermal st res.ses for mmious
special distributions of temperature in long hollow cylinders
of particular shape have been developed. Some theoretical
aspects of the general problem ha-re also been discussed. In
reference 3 the problem is regarded as an ordinary stress
probIem with given body and surface forces repIacing the
effwts due to t emperrd ure distribution, whereas in reference
4 the equilibrium and boundary conditions of the theory of
elasticity are used without modifht ions to exhibit the tem-
perature elkts as body and surface forces. The method of
reference 4 was applied to swerd speciaI problems that had
tilready been ml-red as vrelI as to problems of composite
bodies and eccentric circuk cylinders. N’o ripplication
of amdyticaI or numerical methods of calculating thermaI
stresses in COOM irregukr multiply connected cyhnders has
~J.WIIpublished.

SCOPEOF PRESIXT INVESTIGATION

iln instigation was conducted at the NACA Lewis kb-
i)ratory during 1w9-50 to calculate thermal stresses in cooIed
irreguletr multipIy connected cylinders. The probIem of ther-
rmil stresses in irregdar cylinders is formulated in a manner

that permits scdution by the use of fhite-difference methods.
The contour integrals of reference 5 expressing the single-
vaIued character of the displacements for arbitrary circuits
around the internal boundaries are vrrit ten in forms suitabIe
for numerical methods of differentiation and integration.
The boundary conditions based on the assumption of force-
free boundaries and sirgk-mducd displacements are formu-
lated in terms of derivatives of the stress function as sug-
g@ed for uniform-temperature problems in reference 5, and
stress functions are set up in a manner that is an extensio~
to the thermal-stress problem of the work of reference 6 on
doubly connected domains at uniform temperatures. The
relaxation techniques of reference 7 are used in solving the
finite-ddlerence problem of determining the stress functions.
DetaiIs of the method are dhstrated by ewunpk. The
method is applied to a symmetricdhj- heated, hollow circular
c-jlinder and also to a hello-ii cirmdar cylinder with asyrn-
metricnI heating to show that the rdaxation technique gives
approximate ions to exact answers obtained by directt math-
ematical methocIs. Comparison of stresses cakdated by
the rekation techniques with those determined by ~~act
methods is alsa made to compare the relative import ante of
several smrces of error. The calculations for the .Concentric
cyIinder are desxr.ibed in detaiI suf3cient to permit the method
to be applied to more irreguIar cyIinders.

SYMBOLS

The following symbols are used in this report:
constants of integmtion
modulus of elasticity in tension and comprwsion
direction cosines of normaI draw-n outward from

region bounded by plane curve
distance in x..-pIane normal to plane curve
residual in relaxation ctdculat ion
polar coordinates
arc Iength of plane cume in zyplane
temperature abo-re initial stress-free state
components of displacement
rectangular coordinates
coefficient of linear thermal expansion
shearing strain components in rectangular coordi-

nat es
unit elongations (strains) in r-, y-, t-red zdirec-

tions, respect irely
Poisson’s ratio

1SUWas XAC-i TN-z#4,“A ?3iIuMmonfcReIsmthxIMethodforCalculatingThermalStmsinCodedIrrrg’ulIuCylfn.dexs”byArthurG.Hdms,19.51.
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c*, u”,u@ normal components of stress parallel to z-, y-,
and z-axes, r=pectively

Tz# shearing-stress component in rectangular coordi-
nates

$ Airy’s straw function
w component of rotation about z-axis

V2 harmonic operator ~z+$ ----

v~
~4

biharmonic operator ~ —~#+2 ~%2y1+g4

THEORY

ASSUMPTIONS

The following conditions axe assumed to exist:
1. Steady-state heat flow exists with temperatures uni-

form along any line initially parallel to we axis of the cylinder.
2. Heat sources and sinks are assumed to be distributed

on the externaI and internal boundark.
3. The temperature distribution is assumed to be deter-

mined by the boundary temperatures and Laplace% equation.
4, The materiaI behaves in an ekst,ic manner.
5, The variation of the elastic constante (modulus of

elasticity, Poisson’s ratio, and coeflkient of thermal expan-
sion) with temperature may be neglected in determining
the thermal stream. ----

6. P1ane sections initially norrmd to the axis of the cylin-
der remain plane.

7. The strains and rotation are ccuistant along any Me
initialIy parallel to the axis of the cylinder.

The extent to which a particular structure would fulfill
these conditions would depend on the particular circum-
stances. The last two assumptions are appropriate when
the cylinder is long in comparison with its cross-sectional
dimensions or when end conditions impose suitable restraint.
The sixth assumption aIIows bending of the cylinder about
axes perpendicular to the axial direction of the cylinder in a
manner that might vary in the axial direction. The kst
assumption permits planes initiaIIy perpen@cukr to @e
axis of the cylinder to take on a warped shape as a re&lt
of the deformation but restricts the bending to a circular
arc; that is, the radius of curvature of lines initially parallel
to the axis of the cylinder does not vary along the length .of
these hues. The assumption of no variation of rotation in
the axial direction is equivalent to assuming that the cylin-
der does not twist.

BASICEQUATIONS

The case of plane strain where body forces are given by
the gradient of a potential is treated in reference 5. As
shown by the detailed derivation in appendix A, the govern-
ing equation.. of reference 6 appliea to the thermakmss
problem defined by the preceding assumptions. This equa-
tion is

V%f)=o (1)

where @ is Airy’s stieess function defined by

As shown in appendix B, the axial stresses can be calculatmi
from the equation

u,=.E(ax+by+c)+ v(u=+uJ-aEZ’ (3)

BOUNDARYConditions

Two basically different types of auxiliary condition arc
established for the set of physical conditions assumed to
exist. These conditions are:

(1) Conditions stemming from the nature of the forces
applied to the surfaces

(2) Conditions stipulating that the displacements be
single valued

In crdculating the stresses due to the temperature distrib-
ution, other stresses such as those clue to centrifugal force
and fluid pressure are to be calculahxl separately and the
tot.d strwses are h be obtained by superposition. All in-
ternal and extend boundaries me therefore postdatod to
be free from applied forces, and the boundary conditions
(reference 8, p. 21) become

U=l+rw?n=o

Twl+Uu~=() 1 (4)

dxm—
–-z

Substitution from equations (2) inta equatiom (4) yiekls

&4 dy,+~ kO——
a~’ ds axa~ d8

.—

from which

d ZIrP_o— ——
d8 ?)y

da~o——=
d8 &? 1

along the boundaries.

(5)
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CONDITIONSFORSIXGLE-YALUSDDKSPLACE.MESTS

The detlning equations for strains and rotation are

(6)

(7)

FOR THERXL4L STRESS IN IRREGUIAR CYLINDERS 73

The change in rotation for an arbitrary path Pi of inte-
gration starting at some pornt (%, VJ and returning to the
same point after encIosing (and only enclosing) the internal
boundary C, is

[“l=$,’”=$%:’’+%”
(8)

From equations (7) and (8), the condition that u be
single valued is

By use of equations (A12) and (A13) of appendix A, equa-
tion (9) may be written

The change in the zwmmponent of displacement for an
arbitrary path of integration starting at some point
(z,, yJ md returning to the same point after encIosing tie
internal boundary cf is

[“~=$id-f%d’+%”(11)

From equations (7) and (11), the condition for singI&
Vahled u is

A’JX+G’-)”=”
(12)

For the term involving rotation in equation (12), inte-
gration by parts gives

—$P“’’=-[wd+$i”w*
where

because of the single-valued chmacter of u achieved by
imposkg equation (10). Furthermore,

$.*’’”=!L’(*’’+%P)
. $( lh-@)d’+$piv(-; %+*)dyPiy 2 ax a~

llquation (12) can now be m-itteu

In equtition (13), integration of the fist two terms by parts
gkes

where

[“.1=[4)=0

because the strains are single valued. Equation (13)
becomes

$(P{ -’%-zs)dz+$p,(-’%+’~-’%)=o=o

(14)

substituting from equations (M2) and (M3) of appendix A
and stipulating that the stresses me Si@e valued give
equation (14) as

(H}
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If the integrations of equation (15) are .performecl along
the internal boundary C,, then from equations (5),

JMcause the integrand of the preceding inkgral is an exact
differential, the integral has the same value (zero) for all
reducible ptiths; hence for the arbitrary circuit Pi equation
(15) becomes

SinliIar reasoning from the single-valued character of the
y-component of displacement leads to tbe eqw!ion

Equations (10), (16), and (17) are simikr in form to some
equations derived by Mindlin in reference 9. The equations
of tht reference apply to integration paths taken along the
boundaries.

BOUNDARYCONSTANTS

The initial objective is to determine the stress function
@so as to ache the boundary-va]ue problem associated with
equation (1). Numerical differentiation could then be
performed to determine the stress components according
to equations (2).

The assumption of stress-free surfaces resulted in equations
(5). With ao and aa as. constants of integration, these
boundary conditions may be integrated to give along the
boundaries .

(18)

In general,

and where aa is a constmt of integration, integration of the
preceding equation along a boundary and use ~f equations
(18) ghe

@f=a41x+ai2Y+ai8 (19)

along a boundary.
Differential equation (1) and boundary conclitions, expres-

sible by equations (18) and (19), do not completely determine
the stress distribution. hTo temperatti~ “terms “ire present,
and the values of a tl, ati, and an are still to he spe.cifie.d. The
initial step in obtaining the compatibility condition (equation
(l)) was to raise the order of the first differential equation of
equations (M) by differentiating once with respect to z and
once with respectt toy. These differentiations, although use-
ful in simplifying the final form of the equation, require that

additional factors be considered. ln the case of multiply
connect ed regions, the resulting equation (equation (l)) doe9
not preclude the occurrence of stress distributions clue to
mechanical dislocations (reference 9). The occurrence of
mechanical dislocations is eliminated by imposing conditions
that rotation and displacements be singk vah~ed. ThKW
conditions are to be used in evaluating the conshmts of
equation (19). The physical conditions of the problcrn will
then bc satisfied, for the stress function has hen clefimxl so m
to satisfy the equilibrium conditions; the compatibility con-
dition is satisfied by the use of biharmonic functions; tho
assumption of force-free boundaries is satisfied by conditions
(18) and (19) on the stress function; and the constants at,,
au, and an are to be evaluated so as to satiefy the conditions
of single-valued rotation and dkplacements. That adjust-
ment of the values of ail, an, and au is sufficient to satisfy t110
conditions of single-valued rotntion and displacements wiIl
become eviclent in the uexL section. A method of determin-
ing the constants that wilI be appropriate for nurncricrd
techniques is needed.

DETERMINATIONOFBOUNDARYCONSTANTSBYFORMATIONOFSPECIAL
SOLUTIONS

A method of using speciaI solutions to determine atl, an,
and an for a doubly connected domain at uniform tempera-
ture was described by Prager (reference 6). A similar
method was suggested for the multiply connected domain
by Scmthwell (reference 10). The method of Prager is here
extended to domains with more than one hole and with Lcm-
perature distributions present. The method is then modifkd
to a form that is suitable for numerical techniques.

Let @ti(i=l, 2, . . . k, . . . n; j=l, 2, 3) bc special
solubions of equation (1) that are defined over the domain
bounded by the external contour 00 ancl the inkrmd contours
cl, c2, :.. ck, . . . Cm. Because equatjon (I) is limiw,
the products of the @u and the arbitrary constants a ~
may be superimposed Lo give the completo solution of the
boundary-value problem according to the scheme

(20)

provided that the boundary conditions for the +,j are proprrly
seIecteLand that the vahws of the boundary constants atj m
properly evaluated.

The boundary conditions for the #,j must be selechd so
that tthafunction given by equation (2o) wiII satisfy equations
(18) on all the boundaries. Because the stresses are given
by second derivatives of d, the addition of a linear function
of the axirdinates to d will lea~’e the stresses unaltered. Tho
assumption is now made that this addition is accomplished
so that” the boundary constank of equations (18) and (19)
are zero on the extermd boundar~’. The. boundary conditions
on the @fj for the external contour Co are

b+” O on Co@{j===

therefore taken as
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The boundary conditions for the @,Jon the internal bound-
aries must now be sekt ed so that 3n linearly independent
soiutions for the @tJwill be obtained and so that the function
defined by equation (20) wilI satisfy equations (18) on aU the
internaI boundaries. This selection “is accomplished as
follows:

Let

on all boundaries emept C’t. On Ck, let

(21)

(22)

(23)

(24)

Certain geometrical aspects of the choices expressed by
w uat ions (21) to (24) are nom mentioned. The obswmt ion
is made, for example, that the equation

is a restriction on OH in addition to the restriction of 4H =x

on (-;, inasmuch as +11=r prescribes dues of & only on the

Iine defining the boundary CL,n-hereas the normal deri~ative

specfies the rate of change of 4ti as the boundary is crossed
in a direction normal to the boundary.

The slope of the phme 4H =* in a direction normal to the
wmtour Ck is b@u/h; but because OH=x for this pIane, the
slope may be vrritten as &/bz. b the direction n, the slope
of the surface t$kl is given by equation (22) as

but in the xy-plane,

dY ax—.—
de h

Therefore, in the direction of n, the slope of the surface 4W
(in equation (22)) has been taken equaI w the slope of the
plane @kl=x and because the intersection O’k of the cy~der
t Iwough t~ with the surface @ I@ in the plane k=z, the
surftlce ~~1 is tangent to the plane qk =x along C’I. The
particdar solution akl@Mtherefore defies a surface tangent
t 0 the pke ~kl‘akIr. Equations (23) require that k be
tangent to the plane @H=y along the intersection C“k of the
cyIinder through Ck with the surface k, and tiuatio~ (24)

require that @n be tangent to the plane dti= 1 aIong the
intersection C“”~ of the q%nder through et vrit.h the
s~fa~ #kft.

The three special solutions, ati&, a~~, and Qta&, ZESO-
ciated with C’kare seen to be tangent to three planes, one of
which pnsses through the y-axk, one of which passes through
the r-axis, and one of -which is paraIleI to the zy-phme.
Determination of au, a~, and a~ is seen to be equivalent to
determb@ the slope of the plane tlu-ough the y-a.sis, the
slope of the plane through the r-axis, and the height of the
plane parallel to the ~-plane. Superposition according to

~k=aklfk+akdd ad%

is thus seen to satisfy the requirements of equations (18)
and (19), but the constants a-~,ati, and au must be properly

chosen. Superposition of all the afjd,, fl still lea-re equa-
tions (18) ancI. (19) satisfied on Ckbecause of the requirements
laid down on RII the &, by equation (21).

The @,, were defined as special solutions of equation (l),

which is equivalent to writing

W$*,= o

(i=l,2, . . . k, . . . n;j=l,2,3) (25]

Equations (25) together v&h boundary-condition e_cyg-
t ions (21) to (24) conatit ute 3n boundary-vaIue probkms for
the 3n particular scdutions dip These indi-iiclurd boundary-
wdue problems with @uand d@Jln specifid on every bound-
ary are now to be soked by methods already described by
Fox and SouthweH (reference 7). ‘iWh the assumption that
the +,, are so evaluated, the next step is to ,calmdate the
dues of aij.

The method for determining the a,j may be symboIicaIIy
e-xpre~d by substituting the compIete int egrd as expressed
by equation (20) into the contour integrak of equations (10),
(16), ind (17). This substitution requires that, on each lth

integration path (enclosing the lth internal boundary), con-

tour integrals in-rolving aII the dtj be formed as coefficients
of the a,0 Formation of these contour int egrrds then

permits writing simultaneous equationa for each l-th bountlary

(k=l, 2, . . . n) so that 3n equations are obtaimd for the
a.fj where the CQntour integrals involring the @ij become
coellicients of the aw”

=-g$p,(,g++)ds ,2*)
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Because there are exactly 3n equations with exactIy 3n
unknowns (the atj), the determination of these constants is
su.fi.icient to insure the occurrence of single-valued rotation
and displacenmnts.

NUMERICAL TE~HNIQUE

The purposes of this section are (1) to Wstrate, by a
concrete example, the detailed steps by which a solution of
a problem may be obtained, (2) to show, by comparison
with a probIem for which the solution is already known, that
the application of relaxation procedurtw to the tite-
difference method outlined in the preceding part of this
report yields a method giving results. that approximate the
correct answers, and (3) to present the rewdts of an investi-
gation of some factors affecting the accuracy of the answers
for some particular conditions encountered in the relaxation
solution of a thermal stress problem.

ILLUSTRATIVEEXAMPLE

The detailed instructions enabling the relaxation calculat-
ion of thermal stresses in an irregular cylinder are presented
in appendix C. The particular problem illustrated is that of
a concentric circular cylinder possessing an. asymmetrical
temperature distribution; however, the description of rne~od
may be appIied to cylinders of more complex shape. The
choice of the concentric circular cylinder enabIed the rehua-
tion work for the stress functions to be cordined to. a. 90°
sector. There would be no fundamental distinction in carry-
ing out the calculations for an irregular protie-relaxation
would merely have to be performed over the entire cross
section entailing more labor. (Although circular bound-
aries were involved, the advantages of using polar coordinates
were not utilized. The use of rectangular coordinates in the
presence of circukw boundaries involv= boundary technique
problems typical of a more irreguhw region.)

The results of the relaxation calculation (reference .11)
according ta Laplace’s equation for the temperature distribu-
tion are presented in figure 1. RHults of relaxation calc-
ulations for special solutions of the biharmonic equation are
presented in figures 2 to 4.” Contour igkgraIs were calculated
as illustrated by table I and the stress function is presented
in table 11. Tangential stresses (tabIe II) were calculated
by computing the second derivatives of the stress function
with respect to radius (reference 8, p. 53) according to the
five-point method of reference_. 12 described in appendix D.

Exact values of radial and tangential stress were calculated
as indicated in appendix E and are also listed in tabIe II.
The maximum tangential strms is seen to be. much larger
than the maximum radial stress. The error in the relaxation
calculation of the maximum tangential stress was about 5
percent. Comparison of the values of tangential stress
calculated by the exact method with values calculated hy
the relaxation method is also present@ in f&me!.

INVESTIGATIONOFFACTORSAFFECI’INGACCURACY

Several factors influencing the accuracy obtainable in
calctiating thermaI stresses by the method just described

were investigated by applying various cahmlation techniqucs

to a problem for which answem could be ctilcula~cd by exac~
mathematical methods. The exumpIe chosen consisted of IL
concentric cylinder subject ed to a symmetrical Lemperrdmre
distribution. DetaiJs of the reIaxat.ion calculation aro pr~~
sented in appendix F.

The results of the reIa~ation caIculntion for the ton~peru-
ture distribution are p&ented in figure 6. Because dimen-
sions of the cylinder were mactly the same as those of the
illustrative example previously discussed, the special solutions

h, Az, ~d @18demed iR tl~at ~X~mplc are usable in t~l~?
present example, This situation iI1ustratm an impOrtWL

feature of the use of relaxation methods in calculating Lhermal

stresses; that is, once the time consuming biharrnonic relax-

ation work for the special functions @u, @a, and #n has been

completed for a given shape of body, relatively little extra

work is required to study the effecte on thermal stresses of

changes in temperature distribution.

For the symmetrical temperature distribution of figure 6,

the boundary constants all and al~ were-found to vanish.
The values of al~for the paths a, b, and c of figure 4 aro pre-
sented in table 111. The Airy stress function and the stresses
calculated from it by numerical differentiation according to
appendix D are listed in table IV.

Exact values of Airy’s stress function wero calcuIahxl
according to appendi.. G. The value of tho arbitrary con-
stant D in equation (G4) was adjusted to givo @=0 for
r= 12. Results are listed in table IV. Second derivatives
of the exact values of Airy’s stress function were then cal-
culated by, the numericaI methods of a.ppendk D to givo tho
tanger$ial stress .vahws listed in table W_ Exact values of

tangeqti@ stress were calculated using thg second of equa-

tions (El) and are also listed in table IV,

Comp”mison” of the errors in tangential stress of talh W
shows that the errors &sociated with the .mlmericaI differ-
entiation of the rdkxation-calculated Airy function wcro
much Iarger f@n those associated with the numerical dif-
ferentiation of the exact Airy function. (Errors in the nMx-
imum stmes were 21.5 and 6.5 percent, respectively.) This
comparison suggests that the relaxation-caIcuIatexI Airy
function was an important source of error.

The relk~ation-calculated stress function was calcukdd as
the product a,@N (a~pendix F). An exact value of ala
was calculated by observing that the erect values of @ in
tabIp IV range from zero at r= 12 to —467,627 at r=4;
wherein.. in figure 4 the values of +18 range from zero at
r= 12 to 1000 at r=4. The exact vtdue of ala is therefore

–467,627
ala=

1000
=–467.627

h indicated by the data of table lT.1: the errors associated
with the processes of integrating difference quotiente to cal-
cuIate the boundary constmts can be significant but arc
small if the calculated values of the boundary ccmstanta are
averaged over severed paths.
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The extent to which errors in the relaxation calcuhtion of

the Airy function influence errora in the stresses was evalu-

ated by rounding off the previously determined exact w-dues

of Airy’s stress function to three significant figures. Corre-

sponding stresses and errors are presented in table IV. In

general, the errors associated with the three-figure Airy func-

tion are seen to be significantly lower than those associated

with the relaxation-calculated Airy function. Apparently,

the equivalent of three-figure accuracy was not achieved in

the relaxation calcuhttion of the Airy function. Comparis-

on of the VSIUCSof tangential stress calculated by the exact

method with valu= calculated by the relaxation method is

also presented in figure 7. Improved accuracy could be

accomplished by (1) further reduction of residuals with the

introduction of another significant figure, (2) the use of a

finer net spacing, (3) the use of more elegant finite-~erence

methods, or (4) some combination of (I), (2), and (3). A

critical discussion of some factors irdluencing the accuracy

of relaxation procedures is contained in reference 13.

APPENDIX A

DERIVATION OF BIHARNlONIC EQUATION

An outline of the derivation of the governing partisJ
differential equation for the stress function is given in refer-
ence 4. A detailed derivation using the conditions imposed
in the section on assumptions follows:

The defining equations for the no~l strains (reference 8,
p. 7) are

au
‘*=z”

CONCLUDING REMARKS

ThiE- investigation has yielded a numerical method for cal-
culating thermal str@asin a cooled irregular cylinclcr posscM-
ing one _or more cooling passages under steady-state temper-
ature conditions. Application of the method to structures
such as internally cooled turbine blades is suggested. The
use of relaxation methods and elementary methods of futito
Wlerences has been found to give approximations to corrml
values when compared with previously known solutions for
concentric circular cylinders possessing symmetrical and
asymmetrical temperature distributions.

LEWIS FLIGHT PROPULSION LABORATORY

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

CLEVELAND, OHIO, illay 10, 1961

aw
“=G

and the defining equations for the shearing strains are

(AI)

(A2)

The defining equation for the rotition (reference 8,
p. 162) is

“=x%-%)
(A3)

The assumption that the strains and rotation are constant
in the direction of the z-axis (axis of the cylinder) permit-s
writing

The conditions that the strains be compatible with dis-
placements specified by u, U,and w are (reference 8, p. 190)

From equations (A3) and (A4), equations (A5) become

(A5)

(A6)
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The first of equations (A6) remains, mhereas the fourth
and fifth of equations (A6) vanish identicality. The second,
tbird, and sixth of equations (A6) may be written

(A.i)

Because of the assumption that plane sections initially
normal to the tmis of the c~-hler remain plane after the
deformation,
mitten

showing that
ce@~ proof
identicrdly is

the displacem&t in the zdi.&ction may be

?I’=j(z]r+g(z)y +h(z)

equations (A7j wish identically. The pre-
that the last fi-ie of equations (A6) -ratish
essentially a demonstration that these com-

patihiIity conditions are satisfied as a consequence of the

initial assumptions. Of equations (~6), the only nonvanish-

ing equation is now the compatibility condition

(M)

The generalized Hooke’s Iaw equtitions (reference 8, p. 204)
are

C==+ [r.— v(u”+ r.)]+ aT )
IL

EF=+[uB—v(u,+ u.)]+ aT (A9)

t.=; [u.—v(u.+CTJ]+ c= J
Elimination of u. between these equations fiekla

e==-+[(1—Jqaz+ 1+ P)UH+(l + P)cJIT-zh??E.]

1 (AIo)

%=+ [(l–ti~r-~(l+’) ux+(l+’)=~-’~’zl J
Airy’s stress function is defied by

(2)

Equations (~10) and (2) are used with the direct method of
ca]culat &~ thermtd stresses; that is, the equilibrium, bo~d-
ary, and compatibility conditions are used without regarding
temperature terms as body and surface forces. The equilib-
rium equations (reference 8, p. 195) are therefore tit ten
viithout body forces. These equations were reduced to
those of reference 8, page 21, by using the assumption that
plane sections initially normal to the axis of the cyIinder
remain pkme after the deformation, w that.

Substitution of expressions (2) in equations (Al 1) shows
that the stress function has been defhd so as to satisfy
the equilibrium equations ident icauy. The confition re-
maining ta be satisfied by $ is the compatibility condition
(A8). Substitution of expressions (2) in equations (A1O)
fields

The shearing strain is ecpresaed (reference 8, p. 10) in
terms of the shearing stress by

2(1+V)
‘Yrm=— T-E

= 2(1+V) azd_——
E axay

(A13)

By use of equations (A6), (~12), and (A13], equation (A8)
can be written

‘@+
-“E”T

For the assumed temperature conditions,

VT= O

and hence the governing squat ion for @ is

APPENDIX B

CWCUL.ATIOIS OF -L STRESS

Aft er u, and u, lulve been calculated according to equation
(2), the normal stress u. in the axial direction maybe deter-
mined. The third of equations (A9) is

from which
crz=ezE+v(rz+ur)-a ET

(1)

@l)

& stated in the section MSWMPTIOSS. the c~bnder is

free from applied forces and therefore the tot al force in the

asial direction and the ~- and y-components of a bending

couple are zero.
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SSc,dxdy=o
A

1

SSxu, dxdy=o
A

/

(B2)

SS
yu, dxdy=o

A

Because assumptions numbers 6 and 7 in the section
ASSUMPTION~ the strain in the zdirection may be written

e.=tzx+by+c (B3)

where a, 6, and c are constants,
Substitution of expressions given by equations (B1) and

(B3) in equations (IIi) givea - “ - -

aSSxdxdy+b
A SS SSAydxdy+c ~dzdy

SS=-; ~[zJ(G+u,)–aEZ’ldz dy

a
Ss SSAxydxdy+b Axydxdy+c

H
zdxdy

A

Ss
=–+ Ax[v(uz+uJ-aETJdxdy

a
Sr Ss SS,Axydxdy+b Ay2dxdy+c ~ydxdy

1SS‘–~ ~y[v(u.+u,)–aEZ’ldxdy

(B4)

Equations (B4) are three simultaneous equationa from
which the constants a, b, and c may be evaluated. Substitu-
tion of the expression for e, given in equation (B3) for g. in
equation @l) give9 -.

a.= E’(az+by+c) +v(u.+rJ—a ET (3)

from which the axial stresses may be determined.

If the origin of the coordinate axes is taken at the center

of gravity of the cross seetion,

JLXdXdY=JJAY.dXdY=O(B5)

and in any case,

s’s
dxdy=ii 036)

A

where A is the area of the cross section.
Where sticient symmetry is present, the orientation of

the principal axes of inertia can often be determined by
inspection. A method of determining the principal axes am~
principal moments of inertift for arbitrarily shapwl arras
is presented in reference 14. If tlm orienttition of the Lw-
ordinate axes is chosen so it coincides with that of t.hc prin-

cipal axes, then

SSy2dxdy=Iz (B7}
A

SSAxydxdy=o (B8}

rsx2dxdy=Iv (Bu}
. A

where 1= is the moment of inertia about the z-axis, Rnd 1“ is

the moment of inertia about the y-axis. Simplification of

equations (B4) using equations (B5), (B6), (B7), (Btl),

and (B9) furnishes explicit eofut,ions for a, b, and c as follows:

1——
Sra= EIU , A

z [v(u=+uJ-a ET]dr dy

I—— SSb‘“EI. A
y [v(c=+uJ-a EZ’ldx dy

1

(B1o)

1—— SSc=i4E A
[v(a=+aJ-aE~dz dy

Substitution of equations .(10) in equation (3) givt?s

ag=v(c=+aJ-aET- -.

APPENDIX C

DETAILS OF RELAXATION CALCULATION OF TANGENTIAL STRESS IN CONCENTRIC CYLINDER W’ITH
ASYMMETRIC TEMPERATURE IHSTRIBUTION

The temperature distribution was assumed to be deter-

mined by temperatures in degrees Fahrenheit of zero on

the internal boundary of 4-inch radius and 500+1000 cos @

on the external boundary of 12-inch radius. The vaIues of

the elastic constants were assumed to be

a=8.OX 10-8 (in./in./W) ‘“

E= 17.5X 10° (lb/sq in,)

(B1l)

V=().3

The results of the relaxation calculation for tho tempmu-
ture distribution accordhig to the technique described in
reference 11 is presented in figure 1. In all calculations,
the origin of coordinate was Iocrded at the center of the
cylinder. In the present ease (one interred boundary),
the indices of equations (21), (22), (23), and (24) become.
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;=k=n=l

j=l, 2,3

in order to ehninate the use of decirmds in the work of

relmsut ion} equations (21), (22), (23), and (24) were rnocli-

fied as follows:

(In the exterior boundary,

Ou the interior boundary,

—=-250 $
a4,*
an

The boundm-y-~alue problems just defied for the bihar-

rnonic functions 411, #Ju, and 013 were then solved by the

techniques of references 7 and 11 to yield the solutions
presented in figures 2 to 4. (The dimensions of the cylinder
were such that the distance between nodal points couId be
con-renientIy taken as 1 inch. For more genemd cases a
method of handling dimem~ions, nodal distances, and
(Irrivatives, such as described in reference 7, can be fo~ovwd.)

The next step is to cdcuhtte the values of the constants
a**, a,z, and al~ according to equations (26), (27), and (2S).

HERMAL STRESS IX IRREGUL4R CYLINDERS S5

To that. end, th~ appropriate contour integrals -were calcu-
lated as ti~qtrated for functions invoIring +,1 and T tdong

path c in tabIe 1. The numberkg system for points in
the tables corresponds to the numbering system exhibited
by the small cliagram in figure 2, where ~ is the station along
the path of integration and j=l on the positive x-axis.

‘iIith the use of averages of contour integraIs for paths
a, b, and c, the simultaneous equations (26), (27), and (2S)
become

1241.3 a,~= –200 X2S53

S466.3 au=O

8466.3 all= –200X9532.3

from which

ala= —459.7

afl=O

all= —225.2

According to equation (20),

4=a11 411+a~ dfa+a~ 418

from which

~= —225.2 &L—459.7 413

The solution of this equation for points along the positive
z-asis (0=0°) is presented in table 11. Tangential stresses
were calculated from the relaxation schtion for the str-
function by tking second derivatives \tith respect. to radius
according to the formulas of appendi~ D. These results.-
are ako presented in tabIe 11.

APPENDIX D

NUMERICAL DIFFERENTIATION OF AIRY’S STRESS FUNCTION

The purpose of this section is to present the methods used
in appro.xirnat ing to the second deri~ati~es of Airy’s stress
function. The function to be differentiated is wrpressed by

Y=f(x)

where in the present application y is Airy’s stress function
nnd r is radial distance on a cross section of the hollow ccm-
mmtric cylinder. Where p is an integer, h is a uniform tabular
interval of the ind~pendent. variable, and r~ is an arbitrary
point from which the distanre ph is measured, let

r~=ro+ph (D1)

The values of second dw+ratives were ctdculated by the

five-point formulas of reference 12. For the various values

of p, these formulas are: with p=O,

.
~Yu— ~;hz–—(35yo–104y,+114y, –56y,+11yJ (D2)

with p=l,

,

.

with p=4,

DU4=*2 (1 lyrl –56y,+114y,– 104u,+35yd (D6)

Eqnat ion (D2) was used to calculate ckivatims at r=4,
equation (D3) was used for r=5, equation (D4) was used for
r=6 to 10, equation (D5) was used for r=l 1, and equation
(D6) was used for 7’=12.
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APPENDIX E

EXACT DETERIMINATION OF-STRESSES FOR CONCENTRIC CYLINDER WITH ASYMMETRIC
TEMPERATURE DISTRIE~TION

The radial and tangential stresses, respcctively, in the case
of a symmetrical temperature distribution are given in refer-
ence 8 on page 372 by

aETi
u~=

~~~~[
– in ~–

2(1–v)hl: +2(’-9”:1

}

(El)
aETi

Ue=
[

l–h
2(k)ln; $-F%(l+W

where a is the radius of the internal boundary and h is the
radius of the external bcwndary, and where Tt is the excess

of the inner boundary temperature over the temperature of
the external boundary.

From reference 4, the stresses in a concentric circuIar
cylinder possessing the temperature distribution

T= A in r+~+~ (A.rn+C.r-”) cos n6+
m-l

(–Bnr’+Dnr-”) sin ne (E2)

where A, B, C, and D are constants, are

aE
[

4a2P–(3r’–b~(r’+a~
2(1–U) (a’+b~ra 1

(Cl cos O+D1 sin 0)
J

The temperature distribution in ‘F is specified by T=O on
the internal bounda~ and by T=500+ 1000 ccs tl on the ex-
ternal boundary. The stresses will be calculated by super-
posing stresses for a symmetrical temperature distribution
on those calculated for a special asymmetrical distribution.
The given temperature distribution is resolved into two com-
ponents: a symmetrical component defined by T= O on the
interior boundary and T= 500 on the exterior boundary; and

the special asymmetrical component defined by boundary

temperatures of T=O on the interior boundary and T= 1000
cos Oon the exterior boundary.

The stresses calmdated for the symmetrical component of
the temperature distribution were wdculatcd according to
equations (El).

Now. equation @2) is to be wril 1en so as to satisfy the

boundary conditions on the asymmetrical component of LIIC

temperature distribution. The boundary conditions arc

at r=a T= O

at r=b T= 1000 (20S 6

In order to satisfy these conditioi~ imd equaiion (E2); ht

~= 1

A=&= Ba=D==o (E4)

Equation (E2) is thereby reduced to

On r=a,

from which

On r=b,

from which

or

or

from which

‘=(A’r+3coso

O=(A’a+:)cOs’

A,=–~2

1000 Cos 6=
(A’’+:)co’o

Ad+:=looo

%+:=lo(lo——
a’

(z*—bz
c, a2b =1000 ‘“ ‘“”

~=_1000a2b
1 ~z_az . . .- “-.. .

Use of equations (E4) and of the preceding wduc of (?, in

equations (E3) shows that the components of stress. due

onIy to the temperature distribution spccifiwl by T= O on
r=a and T= 1000 cos 6 on r=b are

1000 c2E a2b (W-F’) (rs–a~ ~oa ~
“=- 7 b4–a4

1000 aE a’b 4a’r2—(3r2—b,) (rg+a,j ~os ~1(E5)

‘~= 2(1—v) ra b4–a4

Radial and tangential stresses were superposed from
streseenalculated according to equations (El) and @5) to
give the exact stresses listed in table II.
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APPENDIX F
DETAILS OF RELAIKATION CALCULATION OF TANGENTIAL STRESS IN CONCENTRIC CYLLNDER WITH SY3111ETRICAL

TEXIPERATURE DISTRIBUTION

The tempmature distribution was assumed to be deter-
mined by temperatures of 0° F on the interred boundary of
4-inclI radius and 500° F on the external boundary of 12-
inch radius. The relaxation scdution for the temperature
distribution is given in figure 6. The values of the elastic
constants were assumed to be the same as those used in
appendix C, namely,

Ct=S.OXIO-a (in./in.~F)

E= 17.5 x1O’ (lb/sq in.)

P=O.:3

As in the asymmetrical case treated in appendix C, the
indices of equations (21) to (24) were taken as

~=k=n=l

j=l, 2, 3

and these equations were modified

(1u the exterior boundary,

as follom:

a411_p45y5:—0
“’=o’’=o”= bn t)n

on the interior boundary,

a~,l
4w=250z ~=250 ~

EXACT DETER311NATION

a4,a_o
f#,3=looo

an

These boundary vaIues are the same as those used for the
preceding problem in~oIving the asymmetrical temperature
distribution. The biharmonic functions AI, 41A,and dl~ are
presented in figures 2 to 4. Calculation of the contour
integraLs by the methods described in appendi~ C aml
solution of equutions (26) to (2S) show that

all=al~=O

and that the dues of a18for paths a, b, and c are as given in

table III. The values of .&y’s stress function as determined

entirely by the numerical method were then calculated

using the rekmation vahws of oIS and the average of al~for

paths a, b, and c according to

Values so calculated are presented in tabIe IV. Tangential
stresses were calculated from the relaxation solution for the
stress function by taking second derivatives with respect to
radius according to the formulas of appenclix D. These
results are also presented in tabIe IV.

APPELNDIX G

OF AIRY’S STRESS FUNCTION FOR CONCENTRIC CYLINDER ‘WITH SYM31ETRICAL
TETIPERATURE DISTRIBUTION

The purpose of this section is to present the formda used
in cdculat ing Airy% stress function for the concentric circular
cyhnder with a symmetrical temperature distribution. ~

possibIe form for the stress function is given in reference 8

on page 55 as

$=~ h r+Br’ in ri-Cr’+D (G1)

where ~, B, C, and D are constants and the corresponding

stress co&ponefits are given by

a,=#z+B(l+2 b r]+2C’

“4+ B(3+21nr)+2~g,=—7 ~. 1
The thermal stresses are given by equations

(G?)

(El). For
comparison with the &t ~f equa~ion~ (G2), the first of
equations (El) iswritten

crETf
&l+2hl r)+

2(l– ZJ]lnz-

aET,

[

–$–In b–~ b
2(1–4 In: I&_a2h; (G3)

Comparison of equation (G3) -with tbe fist of equations
(G2) shows that necessary renditions on the constan~ of
equation (GI) are

A= aETt
b&ln:

2(1– JJ)LU;

B=
ceETf 1

632(1– P)In;

~= aETi 1

--(b2 –;–in b–—
2(1 —v)ln Z b’~a’ h;)
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Because the stre~ea are calcula~ed from derivatives of
Airy’s stress function, the vahle of the constant D inequa-
tion (Gl) maybe taken arbitrarily. The vaks of A, B, and
C as just determined are substituted in equation (Gl) to
obt,a.in (G4)
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